This question paper conta	ins 4 printed pages]	
Roll No.		
S. No. of Question Paper	: 2827	
Unique Paper Code	32371402	GC-4
Name of the Paper	: Linear Models	
Name of the Course	: B.Sc. (H) Statistics	
Semester	: IV	
Duration: 3 Hours	Max	imum Marks : 75
(Write your Roll No. on the to	immediately on receipt of	this question paper.)
Attemp	six questions in all,	
selecting three	questions from each Se	ction.
	Section I	
I. State and prove Coc	ran's theorem.	121/2
2. Derive the analysis of	variance for two-way cla	ssified data with
one observation per o	ell under fixed effect m	odel. 12½

P.T.O.

- 3. (a) Consider $y_{ij} = \mu + \alpha_i + \epsilon_{ij}$, i = 1, 2, j = 1, 2, 3. Write the normal equations for estimating μ and α_i . Are $\mu + \alpha_1$, $\alpha_1 + \alpha_2$, $\alpha_1 \alpha_2$, $\mu + \alpha_1 + \alpha_2$ estimable and why?
 - (b) Describe the general linear model and discuss briefly the different studies derived from it. 61/2,6
- 4. (a) Consider the model $E(Y_1) = 2\beta_1 + \beta_2$, $E(Y_2) = \beta_1 \beta_2$, $E(Y_3) = \beta_1 \beta_3$ with usual assumptions. Obtain the BLUE of $\beta_1 + 2\beta_2$ and its variance.
 - (b) For a given model $Y_{n \times 1} = X_{n \times p} \beta_{p \times 1} + \xi_{n \times 1}$ with $E(\xi) = 0$, $V(\xi) = \sigma^2 I$ and $\rho(X) = p < n$. Obtain an unbiased estimator of σ^2 .

Section II

5. (a) For a Simple linear regression model $Y_i = \beta_0 + \beta_1 X_i + \epsilon_i$, find the 100 $(1 - \alpha)$ % confidence interval for the mean response at a particular value of the regressor variable X.

(b) Show that, for any linear model:

$$\sum_{i=1}^{n} V(\hat{Y}_i)/n = trace \frac{\left\{X(X'X)^{-1} X'\right\}\sigma^2}{n} = p\sigma^2/n$$

where p is the number of unknown parameters. 6,61/2

- (a) Discuss the problem of testing for lack of fit in simple linear regression model.
 - (b) What do you mean by bias in regression estimates? Suppose we postulate the model $E(Y) = \beta_0 + \beta_1 X$ but the model $E(Y) = \beta_0 + \beta_1 X + \beta_{11} X^2$ is actually the true response function, unknown to us. If we use observations of Y at X = -1, 0, 1 to estimate β_0 and β_1 in the postulated model, what biases will be introduced in them? 6.6%
- 7. (a) Which specific regressors seem important in multiple regression? How will you address this question?

 Discuss.

We fit a straight line model to a set of data using the formulas $b = (X'X)^{-1}X'Y$. $\hat{Y} = Xb$ with the usual definitions. We define $H = X(X'X)^{-1}X'$. Show that :

SS(due to regression) =
$$Y'HY = \hat{Y}'\hat{Y} = \hat{Y}'H^3\hat{Y}$$
. 6.6½

- 8. Write notes on any two of the following: 6.6½
 - (a) Role of orthogonal polynomials in fitting polynomial models in one variable
 - (b) Stepwise regression method
 - (c) No intercept regression model.

